

The Aeronautical Telecommunication Network: a Cooperative Venture

NASA Workshop on Integrated CNS Technologies
Cleveland, Ohio
1-3 May 2001

Mike Murphy
ATN Systems, Inc. (ATNSI)
703-412-2900, Mike.Murphy@atnsi.com

Data Link Implementation Chicken vs. the Egg

The Problems

Technology First

- Or -

Applications First

Solutions

Program Commitments(Technology and Applications)

Users Equip First

- or -

Providers Equip First

Cooperative Development (Users and Providers)

ATNSI Consortium

- Air Canada
- Alaska Airlines
- American Airlines
- American Trans Air
- Continental Airlines
- Delta Air Lines
- El Al Israel Airlines

- Federal Express
- Hawaiian Airlines
- Northwest Airlines
- Trans World Airlines
- United Airlines
- United Parcel Service
- US Airways

ATNSI/FAA Cooperative Agreement

Objective

◆ Provide Capacity and Efficiency Benefits to World-Wide Flight Operations

Develop the critical components of the Aeronautical Telecommunication Network (ATN) and encourage wide-spread deployment in the air and ground segments of the aviation community.

ATN - What is it?

- Aeronautical Telecommunication Network (ATN)
 - "Internet-like" network protocol approved by ICAO for Civil Aviation Authority (CAA) Air Traffic Data Communication Services - air/ground and ground/ground
 - ◆ Based on OSI standards (not TCP/IP)
 - Open System (Non-Proprietary)
 - Supports MOBILE Users
- Operates over ICAO-Compliant Subnetworks
 - ◆ SATCOM Data 3, VDL-2, etc.

ATN Design Objectives

- Extensive use of existing Networks
- High Integrity Data Transfer
- Mobile Systems Capability
- Prioritized Resource Management
- Scaleable
- Policy Based Routing
- COTS wherever practicable

COTS: Commercial Off-the-Shelf Software

ATN Architecture (Air/Ground)

		Communication Service
A S E	Application Service Element (ASE) Subsystem CM/CPDLC/ADS-A/FIS	Dialog Service
R R I	Upper Layers Subsystem ACSE/Fast Byte COPP and COSP Transport Subsystem COTP	Transport Service
	Internetworking/Routing Subsystem CLNP/IS-SME/ES-IS/IDRP	
(Subnetwork Access Subsystem Ground SNDCF/Mobile SNDCF/ISO 8208 (X.25)	Subnetwork Service

ATN Certification Requirements

- Avionics End System
 - ◆ Transport & Above (with address and data checksums)
 - RTCA DO178B development to "Level C" requirements
- Routers and Ground End Systems
 - ◆ (see RTCA Special Committee 194)
- Certification Plan
 - ◆ Requires ICAO Conformance (via RTCA MOPS)

ATN Infrastructure Components

Air/Ground ATN Implementation Status

ATN Air/Ground Application Services

- Air Traffic Control (ATC) Services
 - ◆ Controller Pilot Data Link Communications (CPDLC)
 - ◆ Automatic Dependant Surveillance (ADS)
 - ◆ Flight Information Services (FIS)
 - ◆ Context Management (CMA)
- Other Potential Services
 - ◆ Aeronautical Operational Control (AOC)
 - ◆ Aeronautical Administrative Communication (AAC)
 - ◆ Aeronautical Passenger Communications (APC)

ATC Service Benefits

- Reduced Holding and Delays
 - ◆ Enables Timely and Effective Clearances
- Reduced Communication Errors
 - ◆ Enables Utilization of pre-prepared Messages and facilitates Error Checking
- Increased Margin of Safety
 - ◆ Enables a more orderly Operation during Traffic Rushes

Problem: Congested Voice Radio Sector

Solution: Data Comm. + Voice Radio

Example: FAA Study

Problem

Solution

Air/Ground ATN Implementation Programs

FAA CPDLC Build 2 Program and Link 2000+ Initiatives

FAA CPDLC Build 1/1A Programs

EUROCONTROL PETAL IIE Project

2001 2003 2005 2007 2009

PETAL IIE Project Overview

- PETAL = Preliminary Eurocontrol Test of Air/Ground Data Link
 - ◆ PETAL IIE = Extension of PETAL Project to include ATN Operations
- Single Site: Maastricht Upper Area Control Centre
- Operational Services
 - ◆ Transfer of Voice Communication, Initial Contact, Altimeter Setting
 - ◆ Clearances and Requests: Flight Level, Route and Heading, Speed
 - ◆ "Passive" Requests (e.g. Preferred Level, Top of Descent)
- Uses VDL Mode 2 as Air/Ground Subnetwork
- American Airlines is the Launch Airline

www.eurocontrol.be/projects/eatchip/petal2/

PETAL IIE Overview

Status:

- End-to-End Testing in Progress
- Flights Start in June 2001

FAA CPDLC Build 1 Overview

- Single Site: Miami Air Route Traffic Control Center
- Provides 4 Operational Services
 - ◆ Transfer of Voice Communication
 - **♦** Initial Contact
 - ◆ Altimeter Setting
 - ◆ Informational Free Text (menu capability built by supervisor inputs)
- Uses VDL Mode 2 as Air/Ground Subnetwork
- American Airlines is the Launch Airline

www.adl.tc.faa.gov

FAA CPDLC Build 1A Overview

- National Deployment: All Air Route Traffic Control Centers
- Provides Additional Operational Services
 - ◆ Larger Message Set accommodating assignment of Speeds, Headings, and Altitudes
 - ◆ Includes Route Clearance Function
 - Capability to accommodate Pilot-Initiated Altitude Requests
- Uses VDL Mode 2 as Air/Ground Subnetwork
- American Airlines is the Launch Airline
- Widespread Industry Participation is Anticipated

www.adl.tc.faa.gov

FAA CPDLC Build 1/1A Architecture

Next Steps: R&D

- Application-Driven Bandwidth Requirements
- Network Management/Security
- Integrated Architectures

Application-Driven Bandwidth Requirements

- Applications
 - ◆ Next Generation (Air Traffic, Wx, etc.) Requirements
- Subnetwork Capabilities
 - ◆ Bandwidth Requirements
- Required Communication Performance
 - ◆Integrity, Availability, Latency Requirements

Network Management/Security

Integrated Architectures

A Application Service Element (ASE) Subsystem S CM/CPDLC/ADS-A/FIS E R Upper Layers Subsystem Integrity ACSE/Fast Byte COPP and COSP R (peer-to-peer) **Transport Subsystem COTP** Internetworking/Routing Subsystem Availabili CLNP/IS-SME/ES-IS/IDRP Subnetwork Access Subsystem Ground SNDCF/Mobile SNDCF/ISO 8208 (X.25)

The Aeronautical Telecommunication Network: a Cooperative Venture

NASA Workshop on Integrated CNS Technologies
Cleveland, Ohio
1-3 May 2001

Mike Murphy
ATN Systems, Inc. (ATNSI)
703-412-2900, Mike.Murphy@atnsi.com